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We have studied the time evolution of the contact area between a spherical punch 
and a half-space elastomer sample by means of a cyclic push-on/pull-off test. The 
contact area edge is assumed to be a crack tip which propagates in the interface, 
moving backward and forward. It is shown that the equation of the kinetics of 
adherence, proposed in 1978 by Maugis and Barquins3 G - w = w+(a,. u ) ,  linking 
the strain energy release rate G, the Dupr6 energy of adhesion w and the function + 
characteristic of the viscoelastic material tested, is valid if w takes two particular 
values. The first, w,, depends on the initial contact time, the second, w,<w,, 
depends on the compression time. These values are calculated theoretically 
according to Johnson er af.' by measuring the contact area radius. Thanks to this 
kinetic law, we can predict the number of cycles needed for separating the materials 
in contact. Moreover, it stresses the fact that the rupture does not occur if the 
application time of the tensile force is below a certain critical value. The 
experimental data obtained with a spherical glass punch on the flat surface of a 
polyurethane sample reproduce the theoretical predictions faithfully. 

KEY WORDS Adherence; Crack propagation; Cyclic loading; Elastomers; Fracture 
mechanics; Polyurethane. 

INTRODUCTION 

In 1881, Hertz' established the theory of the contact between a rigid 
sphere and an elastic half-space. However, as it was pointed out by 
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56 M. BARQUINS AND D. WEHBI 

Johnson et aL2 in 1971, Hertz’s calculations do not take into account 
the attractive molecular forces (Van der Waals’s forces in the case 
of elastomers) which contribute to the increase of the contact area 
and of the punch penetration into the elastic material. 

The approach taken by Johnson et d2  was based on the study of 
the energy balance, the contact area under a given load being that 
which minimizes the total energy (elastic, potential and surface 
energy). Therefore, even for a zero load, the contact area has a 
finite value and a breaking strain is required for separating the two 
surfaces. Maugis and Barquins3 have shown that this theory is an 
application of Griffith’s theory4 to brittle fracture since the contact 
rupture does not occur suddenly but progressively and can be 
considered as a crack propagating inwards along the interface. 
Therefore, the equilibrium state of two solids brought into contact 
corresponds to the case G = w where 

G = strain energy release rate 
w = y ~ +  YZ - y12 = DuprC’s energy of adhesion 
y1 = surface energy of the punch 
y2  = surface energy of the sample 

y I 2  = surface energy of the interface punch-sample. 

For a given contact area A,  the equilibrium is stable for 
dGldA>O; it is unstable for dGldA < O ,  the elastic force of 
adherence being the force corresponding to the particular case 
dGldA = 0. The equilibrium can be disrupted if the applied load or 
the elastic displacement are modified (in this case, G is no longer 
equal to w). For G > w, the contact area decreases as the crack 
moves forward (opening mode I). Inversely, for G < w, the contact 
area increases as the crack moves backward (healing). The 
difference G - w represents the crack extension force applied to the 
crack tip. It is the motive force of the crack. Under this force, the 
crack takes a limiting speed v which depends on the temperature. 

Assuming that the viscoelastic losses are proportional to w, as 
was suggested by Gent and Schultz5 in 1972, and that they are 
localized at the crack tip, thus implying that gross displacements 
remain wholly elastic, we can write3 

G - w = w # ( u T .  V) (1) 
The second member represents the viscous drag due to the losses 
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ADHERENCE OF ELASTOMERS 57 

at the crack tip and @(aT - v) is a dimensionless function depending 
on the crack speed u and on the temperature through the shift 
factor uT of the Williams, Landel and Ferry6 (WLF) transformation. 
@ is characteristic of the viscoelastic material and is directly linked 
to the frequency dependence of the imaginary component of the 
Young’s modulus.’ 

The interest of Eq. (1) is that surface properties (w) and 
viscoelastic losses (@) are clearly decoupled from the elastic 
properties, the system geometry and the loading conditions, which 
only appear in G. Experiments carried out with a spherical or a flat 
punch in contact with elastomer surfaces under fixed load,3 fixed 
grips* and fixed crosshead velocity’ as well as peeling 
 experiment^^*^*'^^" have shown that @ varies within a wide range of 
propagation speeds, as 

where a ( T )  and II are parameters which depend respectively on the 
temperature and on the tested material. Thanks to the empirical 
function @ we can predict the rupture kinetics in every case. Such a 
prediction presupposes that rupture is adhesive and the application 
of Eq. (1) implies that gross displacements are purely elastic. 
Maugis and Barquins12 have shown that the speed of the crack 
propagation is greater when the applied load is increased than when 
it is decreased. This phenomenon arises from the fact that the strain 
energy release rate, which is directly linked to the stress intensity 
factor, cannot be negative and that, for G = 0, an increase in the 
contact area (closing crack) is due to an instantaneous elastic 
loading characterized by a vanishing crack profile (tangential 
junction) until the contact area calculated by Hertz is reached. 
Then, the crack is moved backward very slowly by the motive force 

Consequently, when pull-off experiments under fixed loads are 
performed the rupture time is all the longer (e.g., the elastomers 
are all the more adhesive) as the contact time is Iong (dwell-time 
effect). There has been a twofold interpretation of the increase of 
adherence with respect to the initial contact time: the former is due 
to the macroscopic creep of the elastomer which both undergoes 
deformation and “wets” the surface of the punch,13 and the latter to 
the microscopic diffusion of the free ends of the polymeric chains 
across the interfa~e.’~ 

(2) @ = a( T)v” 

w - G. 
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58 M. BARQUINS AND D. WEHBI 

As regards the glass-elastomer contact, Barquins” showed that 
the increase of adherence was caused by the release of the elastic 
energy that was stored in the asperities particularly compressed in 
the contact area. This additional energy is never taken into account 
in the determination of the energy release rate G. Thus, an increase 
in the initial contact time brings about the decrease of the crack 
motive force .G - w and slows down the separation process through 
the decrease of G. The G - w decrease can also be interpreted as 
an increase in the apparent Dupr6’s energy w. This assumption has 
the advantage to give a very simple representation of the contact 
area evolution when the spherical punch is submitted to push- 
on/pull-off tests. 

Our aim is to show that the cyclic loading test allows an 
experimental selection of two apparent values of w:wl for a long 
contact dwell time, y < y for a shorter time. Moreover, we will 
show that we can predict the time evolution of the contact area and 
of the punch penetration along with the number of cycles needed 
for observing the complete contact rupture. 

ADHESIVE CONTACT 

In 1965, Sneddon16 generalized Hertz’s calculations to surfaces of 
any shape having axial symmetry by using Hankel’s transform and 
Abel’s integral. It was shown17 that the proposed solution allowed 
for the study of adhesive contacts if an integration constant was 
supposed to be non-zero. This constant is proportional to the stress 
intensity factor at the contact area edge, so that the calculation of 
the normal stress and the discontinuity of the displacement lead to 
formulae identical to those of fracture mechanics in mode I 
(opening mode). Therefore, the contact area edge can be seen as a 
crack tip which propagates in the interface, moving backward and 
forward as the applied load increases or decreases. 

The edge of the contact area, like any three-dimensional crack, is 
subjected locally to a plane strain state,18 so that the strain energy 
release rate G is linked to the stress intensity factor K, by 
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ADHERENCE OF ELASTOMERS 59 

where E and v are the Young's modulus and the Poisson ratio 
respectively (v = 0.5 for elastomers). The factor 1/2 accounts for 
the punch rigidity. In the case of a rigid sphere of radius R ,  the 
stress intensity factor can be expressed with respect to the applied 
load P and the contact radius a17 

P 
a3K 
R 

(4na3)'" 

-- 
K,  = 

where 

4E 
3(1- v2) 

K =  

Thus, the strain energy release rate G connected with the radius a 
of the contact area can be written 

2 

( $ - P )  
G =  

6na3K 

as well as the elastic displacement d 

a' 2P 
3R 3aK 

d = - + -  

(3) 

(4) 

In the equilibrium state, G = w so that Eq. ( 3 )  and (4) allow the 
calculation of the equilibrium values of a and d 

PR 3nwR 6nwR 3nwR ' I2  'I3 
f f={y[l+-+(g+(p)) P I} ( 5 )  

a' 8nwa ' I2  

d=R-(3K) 
Equation (5 )  proves to be similar to that of Johnson et a1.' based 

on the study of the energy balance. 
Sneddon's16 equations applied to an adhesive contact17 reveal that 

the junction of the elastic solid to the sphere is vertical (fracture 
mechanics geometry) as is shown in Figure 1. For comparison we 
have also represented the tangent junction which is given by Hertz's 
theory for the same applied load. Both kinds of junction can be 
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60 M. BARQUINS AND D. WEHBI 

FIGURE 1 Geometry of adhesive contact in equilibrium for a rigid sphere on an 
elastic half-space. For comparison, Hertzian contact under the same load is also 
given (fine line). 

easily recognized by using an interferometric technique. l2 Thus, the 
term in brackets in Eq. ( 5 )  brings in a corrective factor to Hertz’s 
theory which must be taken into account when the applied load is 
weak. For instance, under a zero load the contact radius has a finite 
value 

6nwR2 ‘I3 
a P = o  = (7) 

Under a slightly negative load a stable contact area can be observed 
as well. The limit load corresponding to the stability is P, = - ZnwR 
which satisfies (y+(p)) 3xwR = o  

in Eq. ( 5 ) .  Under this specific load, the crack propagates instan- 
taneously leading to a complete separation. The value of P, is 
independent of the mechanical properties of the material. It 
represents the elastic adherence force of a spherical punch in 
contact with an elastic half-space in a fixed load test. 

Figure 2 illustrates the equilibrium relations for an adhesive 
contact (curve G = w) and for a non adhesive Hertzian contact 
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ADHERENCE OF ELASTOMERS 61 

FIGURE 2 The elastic displacement d variations according to the contact area 
radius (I, in reduced coordinates. G = w represents the equilibrium curve; curves [PI 
show the variation of d with respect to a at fixed load P. Curve G = 0 is given by 
Hertz’s theory. 

(curve G = 0) in reduced coordinates 

The variations of the elastic dispalcement with the contact radius 

are also recorded under well defined loads curves [PI where [PI = 

’). These curves are independent of the DuprC adhesion 
3zwR 
energy. Their minima, when they exist (for P > 0), are all localized 

( 
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62 M. BARQUINS AND D. WEHBI 

on Hertz's curve3 (G = 0). If starting from the equilibrium state 
under a Po load (Figure 2 point L),  the punch is submitted to a 
P < P o  load, the equilibrium is upset and the strain energy release 
rate G reaches an instantaneous value greater than w, whereas the 
contact area decreases. 

Similar experiments3 performed with a spherical glass punch on a 
polyurethane sample have shown that d decreases instantaneously 
whereas a remains constant, thus illustrating the elastic response of 
the system (part LM or LM' on Figure 2 ) .  This variation is followed 
by a simultaneous variation of a and d under the fixed load P along 
the corresponding curve [PI.  Consequently if P > P, a new equi- 
librium state can be observed (part MN). Inversely if P <  p, 
fracture occurs (part M'Q') .  The propagation kinetics along curve 
[PI can be studied by means of Eq. (l), G being calculated from 
Eq. (3). Moreover, it has been shown3 that the crack speed 
decreases or increases according to whether ( d C / d a ) p  is positive or 
negative. The boundary between the two behaviors is plotted on a 
dotted curve (Figure 2). 

Starting either from point N corresponding to an equilibrium 
state or from point N'  corresponding to an unloading under a force 
P, the punch is submitted again to the Po load. Then, a continuous 
evolution takes place in two successive phases.12 The first (part NT 
or N'T on Figure 2) is instantaneous and corresponds to the elastic 
response of the sample. It starts with a displacement variation, the 
radius a remaining constant (part NS or N'S' )  and G varying from 
w to 0. 

From G = 0, the evolution follows the branch ST or S'T 
according to Hertz's theory. In this first phase, the stress intensity 
factor is equal to zero and the junction of the half-space to the 
punch is tangent. 

The second phase (branch TL) illustrates the closing of the crack 
under a constant Po load. In this case, G varies from 0 to w and the 
junction is vertical. It is then possible, as is shown in Figure 2, to 
carry out a cyclic push-on/pull-off test between two fixed loads Po 
and P I  which on the one hand involves the existence of two 
instantaneous phases (LM' and N'T)  and on the other hand two 
phases characterized by a slow kinetics (M'N'  and TL). 

For the evolution along the branches LM' or N'T the energy 
dissipation is quasi null. For the evolution along the branches M'N' 
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ADHERENCE OF ELASTOMERS 63 

or TL the viscoelastic losses are located at the crack tip. Further- 
more, the contact dwell time effect under the load Po can be 
observed. In other words, using Eqs. (1) and (2), the cyclic 
push-on/pull-off test allows knowledge of the continuous variation 
of the contact radius until the separation occurs. 

EXPERIMENTAL 

The experimental set up (Figure 3), which was used for studying the 
elastomer adherence under fixed load: consists essentially of a 
precision balance supporting at the end of one arm a hemispherical 
glass lens of radius R. This indenter is applied for a duration t under 
a compressive load P, against the flat surface of an elastomer. A 
tensile force P' is applied to the end of the other arm by means of 
an electro-magnet for a duration t'. The contact area, illuminated 
by reflection of monochromatic light, is observed through the lens 
with a microscope. For a quantitative evaluation of the contact area 
evolution, a 16-mm camera records the contact areas at 50 frames/s 
with approximately tenfold magnification; the contact radii are then 
measured on the enlarged frames. Besides, an inductive transducer 
allows the displacements d of the indenter in the sample to be 
measured continuously. 

The tested material is a polyurethane (PSM4 Vishay, E = 
5.4 MPa, Y = 0.5) sample, recommended for dynamic studies in 
photoelasticity, showing an optically smooth surface. 

16mm camera--@ , 0 
microscope- ~ - - - 

displacement. 
transducer 

FIGURE 3 Schematic arrangement of the apparatus used to study the adherence 
kinetics of elastomeric materials under cyclic loading. 
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64 M. BARQUINS AND D. WEHBI 

Previous experiments about the peeling of this material in contact 
with a glass surface3 or with the same material," the unloading of 
spherical or flat glass indenters under fixed fixed grips* or 
fixed crosshead velocity,' have shown that the dissipation function @ 
characterizing this material varies as vo.6 within a wide speed range 
(10-'-104 pmls). Moreover, when it is brought into contact with 
glass, this material shows an adhesion energy w of 30 to 100 mJ/m2 
according to the ambient humidity"*20 and to the initial compres- 
sion time. l5 

The sample surface as well as the lens surface were cleaned 
before each test with alcohol, dried in warm air and left for 30min 
until the equilibrium with room atmosphere was reached. The 
samples failed to exhibit any surface feature such as exuding 
substances or dust which would have altered the adhesion energy 
value during the tests.21 

RESULTS AND DISCUSSION 

Figure 4 illustrates the time evolution of the contact radius for a 
cyclic unloading (P' = -30 mN, t' = 5 s) and loading (P = 30 mN, 
t =  1 s) test (curve I). Curve I1 shows comparatively the time 
evolution of the contact radius for a continuous unloading (P' = 
-30mN), the other parameters being the same as in curve I: 
indenter radius = 2.19 mm, initial compressive load P = 30 mN, 
initial contact time to = 10 min, temperature = 2 3 T ,  humidity = 
41%. As it is predictable, according to the fact that the experimen- 
tal conditions are similar, both curves are superimposed in the first 
stage of unloading. In curve I, the separation occurred after 11 
loading cycles, i.e., after 71 s. In curve 11, it occurred 26 s earlier, 
i.e., after only 45 s. It was predictable that the cyclic loading test 
which is similar to a fatigue test under fixed load, would delay the 
separation. However, the loading duration 11 X 1 s = 11 s does not 
account for the 26 s delay. Thus, the actual 15 s delay is due to the 
particular separation kinetics which takes place in such a cyclic test. 
When an unloading stage is followed by a loading stage, the contact 
area exhibits two different zones: the first, in the central position, is 
circular and corresponds to a contact time longer or equal to the 
initial time to; the second corresponding to the peripheral area, is 
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oL. 10 x )  30 40 50 time .s 6a 

FIGURE 4 Curve I: time evolution of the contact radius of a spherical glass punch 
on a polyurethane surface submitted to a cyclic loading. Punch radius R = 2.19 rnrn; 
Compressive load P = 30 mN; loading time t = 1 s; tensile load P' = -30 mN; 
unloading time t' = 5 s. Curve 11: time evolution of the contact radius when the 
surface is submitted to a continuous unloading P' = -30 mN. 

annular and periodically brought into contact with the indenter for 
approximately t' = 1 s. Though it is a short time, it allows the partial 
healing of the contact when the crack recedes in the annular area. 
As a result, the following unloading effect does not occur instan- 
taneously in this area, as is shown in curve I, Figure 4. Therefore, 
the kinetics of the crack propagation in opening mode in the 
peripheral zone causes the separation to be delayed in the cyclic 
loading test. 

For an initial contact time to = 10 min, the initial contact radius is 
a, = 206.5 pm and the corresponding adhesion energy, calculated by 
using Eq. (9, is wl = 46.4 mJ/m2. Under the same conditions, the 
Hertz contact radius would be uH = 190 pm (w = 0). As is shown in 
Figure 4, after each loading cycle the contact radius is greater than 
a H :  a = 197 pm. Consequently, the contact is adhesive and the 
corresponding adhesion energy calculated by using Eq. ( 5 )  is 
y = 9 m J / m 2 .  Thus, we can consider that the central and the 
peripheral zones of the contact area are characterized by wl = 
46.4 mJ/m2 and + = 9 mJ/m2 respectively. 
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t t  P I /  A /  I / I /  
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FIGURE 5 Time evolution of the elastic displacement of the punch under the same 
conditions as in Figure 4. Curve I: cyclic loading, Curve 11: continuous unloading. 

-30 

-40 

Figure 5 represents the time evolution of the displacement d 
measured during the previous cyclic (curve I) and continuous (curve 
11) unloadings. d values are positive when the lowest point of the 
indenter is below the level of the sample surface, they are negative 
when it is above. 

Figure 6 shows the d variations according to a. The data are 
deduced from Figures 4 and 5 ,  the obtained diagram is similar to 
that of Figure 2. We can notice that the slow kinetic phases 
correspond to the curves P' = -30 mN and P = 30 mN, and that the 
quasi instantaneous propagations occur either for a constant contact 
radius or along Hertz's curve (G = 0). This fact points out that the 
tested material has purely elastic gross displacements. 

For each value of a, it is now possible to calculate the strain 
energy release rate G (Eq. (3)) and the associated crack speed 
v = d d d t .  The G ( v )  variations corresponding to the crack propaga- 
tion in a zone which always remains in contact with the punch, are 
illustrated on Figure 7 (lower dotted line). The values obtained for 
the cyclic or for the continuous unloadings are quasi identical. 

Using Eq. (1) and considering w = wl = 46.4 mJ/m2 (central zone) 
we have also recorded the dissipation function variations @(aT - v) 

- 

I I I I 1 4 
x) 20 30 40 ' 50 W 70 
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ADHERENCE OF ELASTOMERS 67 

FIGURE 6 The elastic displacement variations according to the contact radius for a 
cyclic loading from P = 30 mN to P' = -30 mN. The data are deduced from Figures 
4 and 5. 

according to v (upper line). On this log-log scale, 9 appears to vary 
as which bears out the previous  result^.^.^,'^ It is then possible 
to perform a graphic determination, from Figure 7, of the 
coefficients a ( T )  which is only dependent on temperature in Eq. 
(2). w(T) = 1.68 X 16 SI units. 

Taking a different approach and assuming that the dissipation 
function is well defined for this specific material, 

+ = 1.68 x 105.210.6 

we can simulate the time evolution of a (Eq. (5)) and d (Eq. (6)) by 
means of a numerical integration of the general Eq. (1). G is 
calculated by using Eq. (3) for P = -30 mN; a is obtained by using 
Eq. (5) for w = wl = 46.4 mJ/m2 when the crack propagates in the 
central zone and w = y = 9 m J / m 2  when it propagates in the 
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I 

1 10 
crack speed , p s - 1  

FIGURE 7 The strain energy release rate G and the dissipation function @ 
variations according to the crack propagation speed u, shown on a log-log scale. 
G(u) is shown by the broken line (cyclic (0) and continuous (0) unloading), the full 
line represents @ ( u )  which varies as the 0.6th power of u. 

T 

t i m e  I s 1 

FIGURE 8 Computed curves corresponding to Figurc 4. 
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FIGURE 9 Computed curves corresponding to Figure 5. 

peripheral zone. The simulated curves are presented in Figures 8 
and 9. It is reasonable to assume w = w, in the central zone since 
the experiment lasts a short time (71s) compared to the initial 
contact time (10min). In the second case, curve I Figure 4 shows 
that the contact time which is equal to 1 s for the first cycles reaches 
2.5 s for the last ones. Thus y only represents a mean value of the 
actual adhesion energies characterizing each point of the peripheral 
zone (the higher values being those on the central zone boundary). 
Nevertheless, the simulated (Figures 8 and 9) and the experimental 
(Figures 4 and 5 )  curves are quite similar. This is also noticeable 
when the experimental (Figure 6) and the simulated (Figure 10) 
variations of d according to a, are compared. Thus, the validity of 
the kinetic model proposed for describing a cyclic loading test is 
confirmed. 

Thanks to this simulation, it is possible to predict the number of 
cycles needed for observing the complete contact rupture in any 
circumstance. For example, Table I shows comparatively the 
experimental and the theoretical numbers of cycles for different 
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E = 5 . 4  MPa 

R = 2.19 mm 

FIGURE 10 The elastic displacement variations with respect to the contact radius 
for a cyclic loading from P = 30 mN to P’ = -30 mN. The data are deduced from the 
computed curves shown in Figures 4 and 5 (Figure 10 is to be compared to Figure 6). 

TABLE I 
Influence of the loading amplitude on the number of cycles leading to the 

contact rupture ( r  = 1 s, r ’  = 5 s) 

Number of cycles 
Loading Unloading 
p (mN) P’ (mN) computed measured 

50 - 50 4 4 
40 - 40 6 6 
30 - 30 11 11 
20 - 20 36 40 
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TABLE I1 
Influence of the unloading time on the number of cycles 
leading to the contact rupture ( P  = 30 mN, P’ = -30 mN, 

t=ls) 

Unloading Number of cycles 
time 
t ‘  6) computed measured 

10 5 5 
6 9 9 
5 11 11 
4 16 16 
3 30 32 
2 m >lo4 

applied loads. As was expected, a decrease in the applied hads 
delays the separation. However, we should bear in mind that 
increasing the number of cycles leads to an increase in the contact 
time in the central zone which in turn increases adherence.” This is 
the reason why, beyond a certain value, the simulated numbers of 
cycles become less than the experimental ones. 

We have also studied the role of the unloading time for a fixed 
loading time (Table 11). We notice that a decrease in the unloading 
time increases the number of cycles needed for observing the 
separation. If the delay is not too long, the contact dwell time effect 
remains negligible and the proposed kinetic model applies; i. e., the 
number of cycles which are predicted is equal to the number of 
cycles which are actually observed. 

Moreover, under our experimental conditions, it was shown that 
for an unloading time less than 3 s, contact rupture did not occur. In 
this case, a stable cycle took place, the contact radius varying 
between two fixed values 130 and 197 pm for t’ = 2 s as is shown in 
Figure 11. This phenomenon is directly linked to the propagation 
kinetics of the contact area edge in the peripheral zone. The width 
of this zone which increases during the first cycles, rapidly becomes 
wide enough so that, during t’, the crack propagates without 
penetrating in the central zone. 

A stable propagation cycle can also take place when the loading 
time is particularly increased. In this case, the adhesion energy M+ 
characterizing the peripheral zone increases, slowing down the 
crack propagation during the next unloadings. 
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0 :: 

FIGURE 1 1  Computed curve representing the time evolution of the contact radius 
for cyclic unloadings of short duration (P = 30 mN, t = 1 s; P' = -30 mN, f' = 2 s). A 
stable cycle takes place and the contact rupture will not be observed. 

SI 8 
time ( s 1 

CONCLUSIONS 

Fracture mechanics concepts can be applied to the study of the 
adherence kinetics of a rigid spherical indenter in contact with the 
flat surface of a half-space elastomer sample submitted to a cyclic 
loading test. The general equation used in previous studies about 
the unloading of spherical or flat glass indenters under fixed 
fixed gripss or fixed crosshead velocity' 

G - w = w $ ( u ~  * V )  

has been successfully applied to the study of the adherence of 
elastomers by cyclic unloading experiments. 

The knowledge of the dissipation function 9, which only depends 
on the temperature through the WLF transformation factor uT and 
on the crack speed, allows the prediction of the adherence kinetics 
in any case provided that gross displacements are purely elastic and 
that the viscoelastic losses are localized at the crack tip. Within a 
wide speed range, $ can be described by 

$(aT. v )  = a(T)v" 
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where n = 0.6 for p~lyurethane.~. '~  Assuming two values of w 
calculated using Johnson et d ' s  theory,* the first wl specific to long 
contact times, the second w, < wl specific to shorter contact times, 
Eq. (1) allows the following predictions 

1) Rupture is not observed in a cyclic loading test under certain 
conditions if it failed to be observed in a continuous unloading test 
under similar conditions. 

2) Cyclic unloading tests compared to continuous unloading tests 
delay the contact rupture. The delay is due to the partial healing of 
the contact during the loading phases. 

3) The occurrence of the complete rupture depends on the 
unloading time. 
4) For short unloading times, a stable cycle takes place so that 

one might think that the fatigue of an adhesive contact cannot be 
observed for a purely viscoelastic material, i .e . ,  if the crack tip is 
left undamaged. 

The experimental results obtained for a spherical indenter in 
contact with the flat surface of a half-space polyurethane sample 
(PSM4 Vishay) reproduce the theoretical predictions faithfully. 
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